Everyone knows the SUM() (and many people also know its window function variant).

When querying the Sakila database, we can get the daily revenue (using PostgreSQL syntax):


WITH p AS (
  SELECT
    CAST (payment_date AS DATE) AS date,
    amount
  FROM payment
)
SELECT
  date,
  SUM (amount) AS daily_revenue,
  SUM (SUM (amount)) OVER (ORDER BY date) AS cumulative_revenue
FROM p
GROUP BY date
ORDER BY date

The result will look something like this:


date       |daily_revenue |cumulative_revenue 
-----------|--------------|-------------------
2005-05-24 |29.92         |29.92              
2005-05-25 |573.63        |603.55             
2005-05-26 |754.26        |1357.81            
2005-05-27 |685.33        |2043.14            
2005-05-28 |804.04        |2847.18            
2005-05-29 |648.46        |3495.64            
2005-05-30 |628.42        |4124.06            
2005-05-31 |700.37        |4824.43            
2005-06-14 |57.84         |4882.27            
...

Doing the same with

This is already quite useful. Very occasionally, however, we do not need to aggregate multiple values in a sum (through addition), but in a product (through multiplication). I’ve just stumbled upon such a case on Stack Overflow, recently.

The question wanted to achieve the following result:


date        factor          accumulated
---------------------------------------
1986-01-10  null            1000
1986-01-13  -0.026595745    973.4042548
1986-01-14  0.005464481     978.7234036
1986-01-15  -0.016304348    962.7659569
1986-01-16  0               962.7659569
1986-01-17  0               962.7659569
1986-01-20  0               962.7659569
1986-01-21  0.005524862     968.0851061
1986-01-22  -0.005494506    962.765957
1986-01-23  0               962.765957
1986-01-24  -0.005524862    957.4468078
1986-01-27  0.005555556     962.7659569
1986-01-28  0               962.7659569
1986-01-29  0               962.7659569
1986-01-30  0               962.7659569
1986-01-31  0.027624309     989.3617013
1986-02-03  0.016129032     1005.319148
1986-02-04  0.042328041     1047.872338
1986-02-05  0.04568528      1095.744679

If this were a Microsoft Excel spreadsheet, the ACCUMULATED column would simply start with 1000 and have the following formula in all other rows:


accumulated(i) = accumulated(i - 1) * (1 + factor)

In other words (values truncated for simplicity):


1000.0 = start
 973.4 = 1000.0 * (1 - 0.026)
 978.7 =  973.4 * (1 + 0.005)
 962.7 =  978.7 * (1 - 0.016)
 962.7 =  962.7 * (1 - 0.000)
 962.7 =  962.7 * (1 - 0.000)
 962.7 =  962.7 * (1 - 0.000)
 968.0 =  962.7 * (1 + 0.005)
 ...

This is exciting because we’re not only requiring multiplicative aggregation, but even cumulative multiplicative aggregation. So, another window function.

But regrettably, SQL doesn’t offer a MUL() aggregate function, even if it were relatively simple to implement. We have two options:

  • Implementing a custom aggregate function (stay tuned for a future blog post)
  • Using a trick by summing logarithms, rather than multiplying operands directly

We’re implementing the latter for now. Check out this cool Wikipedia website about logarithmic identities, which we are going to blindly trust. In the middle of it, we have:


bx * by = bx + y

Which leads to:


logb(x * y) = logb(x) + logb(y)

How cool is that? And thus:


x * y = blogb(x) + logb(y)

So, we can define any multiplication in terms of a bunch of exponentiation to some base (say e) and logarithms to some base (say e). Or, in SQL:


x * y = EXP(LN(x) + LN(y))

Or, as an aggregate function:


MUL(x) = EXP(SUM(LN(x)))

Heh!

Our original problem can thus be solved very easily using this, as shown in my stack overflow answer:


SELECT
  date,
  factor,
  EXP(SUM(LN(1000 * (1 + COALESCE(factor, 1)))) 
       OVER (ORDER BY date)) AS accumulated
FROM t

And we get the nice result as previously shown. You may have to replace LN() by LOG() depending on your database.

Caveats

Try running this:


SELECT LN(-1)

You’ll get:


SQL Error [2201E]: ERROR: cannot take logarithm of a negative number

Logarithms are defined only for strictly positive numbers, unless your database is capable of handling complex numbers as well. In case of which a single zero value would still break the aggregation.

But if your data set is defined to contain only strictly positive numbers, you’ll be fine – give or take some floating point rounding errors. Or, you’ll do some sign handling, which looks like this:


WITH v(i) AS (VALUES (-2), (-3), (-4))
SELECT 
  CASE 
    WHEN SUM (CASE WHEN i < 0 THEN -1 END) % 2 < 0 
    THEN -1 
    ELSE 1 
  END * EXP(SUM(LN(ABS(i)))) multiplication1
FROM v;

WITH v(i) AS (VALUES (-2), (-3), (-4), (-5))
SELECT 
  CASE 
    WHEN SUM (CASE WHEN i < 0 THEN -1 END) % 2 < 0 
    THEN -1 
    ELSE 1 
  END * EXP(SUM(LN(ABS(i)))) multiplication2
FROM v;

The above yielding


multiplication1      
--------------------
-23.999999999999993 


multiplication2     
-------------------
119.99999999999997 

Close enough.

will soon support this as well:
https://github.com/jOOQ/jOOQ/issues/5939



Source link https://blog.jooq.org/2018/09/21/how-to--a-multiplication-aggregate-function-in-sql/

LEAVE A REPLY

Please enter your comment!
Please enter your name here